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In response to the proposal of Tsafnat et al. to converge towards three open
health data standards, this viewpoint provides a critical reflection on the proposed
alignment of using openEHR, FHIR and OMOP as the default standards for clinical
care and administration, data exchange and longitudinal analysis, respectively. We
argue that open standards are a necessary but not sufficient condition to achieve
health data interoperability. The ecosystem of open-source implementations needs
to be considered when choosing an appropriate standard for a given context. We
discuss two specific contexts, namely standardization of i) health data for federated
learning, and ii) health data sharing in low- and middle income countries (LMICs).
Specific design principles, practical considerations and implementation choices for
these two contexts are described, based on ongoing work in both areas. In the
case of federated learning, we observe convergence towards OMOP and FHIR,
where the two standards can effectively be used side-by-side given the availability
of mediators between the two. In the case of health information exchanges in
LMICs, we see a strong convergence towards FHIR as the primary standard, with
as yet limited adoption of OMOP and openEHR. We propose practical guidelines
for context-specific adaptation of open health data standards.

Open standards are a necessary but not sufficient condition for interoperability

“A paradox of health care interoperability is the existence of a large number of standards
with significant overlap among them,” say Tsafnat et al., followed by a call to action towards
the health informatics community to put effort into establishing convergence and preventing
collision [1]. To do so, they propose to converge on three open standards, namely i) openEHR
for clinical care and administration; ii) Fast Health Interoperability Resources (FHIR) for
data exchange and iii) Observational Medical Outcomes Partnership Common Data Model
(OMOP) for longitudinal analysis. They argue that open data standards, backed by engaged
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communities, hold an advantage over proprietary ones and therefore should be chosen as the
steppingstones towards achieving true interoperability.

While we support their high-level rationale and intention, we feel their proposed trichotomy
does not do justice to details that are crucial in real-world implementations. This viewpoint
provides a critical reflection on their proposed framework in three parts. First, we reflect on
salient differences between the three open standards from the perspective of the notion of
openness of digital platforms [2], the paradox of open [3] and the hourglass model of open
architectures [4,5]. Subsequently, we outline the importance of the open-source ecosystem
by reflecting on our considerations in designing and implementing health data platforms in
two specific contexts, namely i) platforms for federated learning on shared health data in
high income countries; and ii) health data platforms for low and middle income countries
(LMICs). These case studies illustrate the limitations of the trichotomy proposed by Tsafnat et.
Particularly, we argue that of the three standards, FHIR stands out as being the most practical
and adaptable which allows it to be used for longitudinal analysis and clinical administration
as well, besides its original purpose as a health data exchange standard. We conclude this
viewpoint with practical implications of these findings and directions for future research of
open health data standards.

Digital platforms require extensibility, availability of complementary components
and availability of executable pieces of software

In their editorial, Tsafnat et al. argue that i) the paradox of interoperability of having over-
lapping standards can be addressed by converging on just three standards; ii) practical and
socio-technical considerations are as important as, if not more important than, technical supe-
riority and therefore balancing of customizability and rigidity is of the essence; and iii) open
standards, backed by engaged communities, hold an advantage over proprietary ones. While
we concur with these points, we argue that these are necessary, but not sufficient conditions
for convergence of health data standards. Existing research on digital platforms underlines the
importance of the platform openness, not only in terms of open standards, but also in terms
of availability of executable pieces of software, extensibility of the code base and availability of
complements to the core technical platform (in this case the health data standard is a critical,
defining component of the core technical platform) [2]. Openness in this context pertains to
the software modules that constitute the digital platform. Realizing openness can be achieved
through open-sourcing the core components of the platform or defining standardized interfaces
through which components can interact [6]. Only when the majority of these aspects of digital
platforms are met can we reasonably expect that the digital platform will indeed flourish and
be long lived.
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Textbox 1: Conceptual background of the digital platform.

Digital platforms are software-based online infrastructures that facilitate interactions
and transactions between users. In the context of this paper, digital platforms serve
as an interface used to interact with data systems. Data systems describe a set of
technologies, tools and processes that extract, manage and deliver data. Where the data
system describes the functional implementation, the data architecture specifies the
design framework, outlining how the data flows in its collection, storage, processing and
governance. Its key components are data sources (original ‘raw’ data that is collected
before any processing), data repositories like databases, data warehouses or lakes
and data processing engines and pipelines that transform raw data into a usable format
for analysis.
All architectures include a core technical platform (the foundational infrastructure)
that can be extended to facilitate the necessary digital services. Data architectures
contain different levels of specifications for the technical components entailed in the sys-
tem. These levels include a systems’ code base (machine-readable text describing how to
extract and process certain data), software tools (programs and applications enabling
digital operations) and stacks (layers of software systems working together).

If open digital platforms are what we want, the question is how to achieve that. In what
they frame as ‘the paradox of open’, Keller and Tarkowski argue that open platforms and
their associated ecosystems can only flourish if two types of conditions are met [3]. The first
condition states that many people need to contribute to the creation of a common resource.
“This is the story of Wikipedia, OpenStreetMap, Blender.org, and the countless free software
projects that provide much of the internet’s infrastructure.” [3] Indeed, Tsafnat et al. have
explicitly taken into account that “an engaged and vibrant community is a major advantage
for the longevity of the data standards it uses,” which has informed their proposal to converge
towards OMOP, FHIR and openEHR over other existing health data standards. However, the
importance of open-source software is somewhat overlooked. This point is only mentioned in
passing when Tsafnat et al. reference work done by Reynolds and Wyatt who already argued in
2011 “… for the superiority of open-source licensing to promote safer, more effective healthcare
information systems. We claim that open-source licensing in health care information systems
is essential to rational procurement strategy” [7]. Hence, we extend the line of reasoning of
Tsafnat et al. by emphasizing that the availability of executable open-source pieces of software,
which inherently make it easier to extend the code base of the health data standard and
thereby driving greater availability of complementary components, is an important criterion
which needs to be explicitly taken into account when choosing which standard to adopt.

The second condition put forward by Keller and Tarkowski is that open ecosystems have proven
fruitful when “opening up” is the result of external incentives or requirements, rather than
voluntary actions. Examples of such external incentives are “… publicly-funded knowledge
production like Open Access academic publications, cultural heritage collections in the Public
Domain, Open Educational Resources, and Open Government data.” [3] Another canonical
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example is the birth of the GSM standard, which was mandated by European legislation [8].
Reflecting on this condition in the context of open health data ecosystems, we observe a salient
difference between FHIR versus openEHR and OMOP, namely that the former is the only one
that has been mandated - or at least strongly recommended - in some jurisdictions. Survey
results on the state of FHIR show that the FHIR standard has been mandated or advised in 20
countries [9]. The European Electronic Health Record Exchange Format (EHRxF), introduced
by the European Commission in 2019 with the aim to ensure secure, interoperable, cross-border
access to electronic health data across the EU, decided in 2022 to adopt HL7 FHIR as the
exchange format for future priority data categories [10]. In the US, the Office of the National
Coordinator for Health Information Technology and the Centers for Medicare and Medicaid
Services have introduced a steady stream of new regulations, criteria, and deadlines in Health
IT that has resulted in significant adoption of FHIR [11]. In India, the open Health Claims
Exchange protocol specification - which is based on FHIR - has been mandated by the Indian
government as the standard for e-claims handling [12,13]. The African Union recommends
all new implementations and digital health system improvements use FHIR as the primary
mechanism for data exchange [14], but doesn’t say anything about the use of, for example,
openEHR for administrative point-of-service systems.

Our third critical reflection on choosing health data standards pertains to the notion of the
hourglass model [4,5] and the concept of open architectures [15]. The hourglass model is “…
an approach to design that seeks to support a great diversity of applications (at the top of
the hourglass) and allow implementation using a great diversity of supporting services (at the
bottom).” [5] The center of the hourglass - the waist or also called the spanning layer in the
information systems parlance - is defined by a set of minimal standards which mediates all
interactions between the higher and lower layers. In the case of the Internet, the spanning layer
is defined by the TCP/IP protocol, which is supported by a variety of underlying connectivity
services (many different physical networks) on top of which many different applications can
be built (email, videoconferencing etc.). We argue that FHIR has an added benefit over
openEHR and OMOP because it can act as the spanning layer within an open health data
platform. Because FHIR is inherently designed to function as a data exchange standard, it
can function as a mediator between different components of the health data platform. The
modularity of the various components that are part of the FHIR ecosystem allow it to be used
effectively to implement subsystems.

We argue that i) the external incentives that have mandated FHIR in certain jurisdictions,
and ii) the inherent modularity of the FHIR standard have resulted in a large boost in both
commercial and open-source development activities in the FHIR ecosystem. Illustrative of
this is the speed with which the Bulk FHIR API has been defined and implemented in almost
all major implementations [16,17], and the SQL-on-FHIR specification to make large-scale
analysis of FHIR data accessible to a larger audience and portable between systems [18].
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Table 1: Number of contributors and number of repositories on GitHub for the three healthcare
data standards as per 28-01-2025.

(a) Last three months

search term # contrib. # repos.
“openEHR” 82 49
“OMOP” or “OHDSI” 446 221
“FHIR 1,648 756

(b) All time

# contrib. # repos.
429 450

1,019 113
8,497 8,617

Textbox 2: Conceptual background of data processing pipelines for analytics.

Data pipelines define a sequence or workflow of processes for data. Data process-
ing engines are tools that process, transform and analyze large-scale data and as such
provide the foundational infrastructure to implement data pipelines. Computing work-
loads are specific tasks executed across data systems, like data processing and analytics.
Data transformation entails all the processing pipelines that convert data into usable
insights. Mappings are specific data transformations that aim to align data from differ-
ent sources with a unified structure. Granular mappings transform data at the most
detailed level, translating data elements across different schemas. Queries are built on
top of transformed data, and retrieve data for insights generation, sometimes requiring
further data processing.

The external incentives have also led to more people voluntarily contributing to FHIR-related
open-source projects, which has resulted in a wide offering of FHIR components across major
technology stacks (Java, Python, .NET), thereby strengthening the first condition for establish-
ing openness. By comparison, OMOP and openEHR have profited less from external incentives
to spur the adoption and thereby growing the ecosystem beyond a certain critical mass. To
illustrate this, a quick-scan of the available open-source components listed on the website of
the three governing bodies HL7 [19], OHDSI [20] and openEHR [21], indicates that the ecosys-
tem of FHIR and OMOP have a significantly larger offering of extensible and complementary
open-source components than openEHR, although for the latter notable mature open-source
implementation are also emerging such as EHRbase [22]. Taking GitHub as an proxy of world-
wide development activities, Table 1 shows the number of contributors and repositories for
three different search terms. Note that these numbers should be taken as rough indicators.
Given that the FHIR standard has broader application areas, one would expect more GitHub
projects than for, say, openEHR.

In summary, we stress that beyond evaluating the intrinsic structure of an open standard and
the community that supports the standard, we need to take into account the wider ecosystem of
open-source implementations and availability of complementary components. From this wider
perspective of the whole ecosystem surrounding the three standards, FHIR stands out as having
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the most diverse and rich ecosystem because it has been mandated in certain jurisdictions and
because its technical foundations are inherently more broad and modular. This is relevant
when comparing these standards in real-world implementations. We now turn to two specific
use cases where these considerations are at play.

Standardization of health data for federated learning

The current fragmentation in health data is one of the major barriers towards leveraging the
potential medical data for machine learning (ML). Without access to sufficient data, ML will
be limited in its application to health improvement efforts and, ultimately, from making the
transition from research to clinical practice. High quality health data, obtained from a research
setting or a real-world clinical practice setting, is hard to obtain, because health data is highly
sensitive and its usage is tightly regulated.

Textbox 3: Conceptual background of distributed data systems.

Data systems often have a centralized architecture, where data is collected in a single
repository or location. However, data systems can also distribute the storage and
processing of data across different nodes or locations such as servers and edge devices.
Servers act as the central processing units in data architecture, supporting computing
workloads in data extraction, storage and transformation of data. Edge devices mainly
provide support to the data extraction and preprocessing, generally located near the
source of the data.
Federated learning is an approach where machine learning models are trained across
a distributed data system. Data transformations and analysis occur on locally held data
across multiple nodes, typically using edge devices or local servers. In this setup, the
server that hosts the machine learning model does not need direct access to the source
data. Instead, it aggregates the outputs of the local nodes (the updated model param-
eters) to train a global model. This method ensures that sensitive data remains local,
preserving privacy while still enabling collaborative model training across distributed
systems.

Federated learning (FL) is a learning paradigm that aims to address these issues of data
governance and privacy by training algorithms collaboratively without moving (copying) the
data itself [23,24]. Based on ongoing work with the PLUGIN healthcare consortium [25],
we have detailed an architecture for FL for secondary use of health data for hospitals in
the Netherlands. The starting point for this implementation are the National Health Data
Infrastructure agreements for research, policy and innovation for the Dutch healthcare sector,
which have been adopted at the beginning of 2024 [26]. Figure 1 shows a high level reference
architecture of the infrastructure to be, comprising three areas (multiple use, applications and
generic features) and a total of 26 functional components (for details please refer to [26]). One
of the prerequisites of this architecture is that organizations that participate in a federation
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of ‘data stations’ use the same common data model to make the data Findable, Accessible,
Interoperable and Resusable (FAIR). These FAIR data stations comprise components 7, 8 and
9 in Figure 1, i.e. the data, metadata and APIs, respectively, through which the the data
station can be accessed and used.

Figure 1: Reference architecture for the Dutch health data infrastructure for research and
innovation [26]

Following the line of reasoning of Tsafnat et al., OMOP would be the go-to standard for storing
the longitudinal data in each of the data stations, where data is transformed from the original
source (component 6), stored in common data model (component 7) and properly annotated
with metadata (component 8). Indeed, by now there are quite a few reports of real-world
implementations of federated learning networks based on the OHDSI-OMOP stack, including
a global infrastructure with 22 centres for COVID19 prediction models [27], FeederNet in
South Korea with 57 participating hospitals [28], Dutch multi-cohort dementia research with
9 centers [29], the European severe heterogeneous asthma research collaboration [30] and the
recently initiated Belgian Federated Health Innovation Network (FHIN) [31].

For the PLUGIN project, however, we choose to adopt FHIR because the data model is
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more compatible with the data model of the clinical administration systems. As PLUGIN
focuses on secondary use of routine health data, we feel it is more suitable than OMOP, the
latter being more suitable for clinical research data. OpenEHR might have been an option,
too, if more implementations and complementary components had been available. Another
reason for choosing FHIR is its practicality and extensibility to be used in a Python-based data
science stack, provenance of RESTful APIs out-of-the-box to facilitate easy integration with the
container-based vantage6 FL framework, and the support of many healthcare terminologies and
flexibility through the profiling mechanism [32–34]. Increasingly, other projects have reported
the use of FHIR for persistent, longitudinal storage for FL. A scoping review on the use of
FHIR for clinical research shows that it is increasingly being used for data preparation, cohort
selection and secondary data sharing [35]. The CODA platform, which aims to implement a
FL infrastructure in Canada similar to the PLUGIN project, compared OMOP and FHIR and
chose the latter as it has been found to support more granular mappings required for analytics
[36]. The fair4health project used FHIR as part of a FAIRification workflow to simplify the
process of data extraction and preparation for clinical study analyses [37].

Given that OMOP can be conceptually viewed as a strict subset of FHIR, hybrid solutions
using a combination of OMOP and FHIR have also been reported, such as the German KETOS
platform [38], and the preliminary findings from the European GenoMed4All project which
aims to connect clinical and -omics data [39]. A collaboration of 10 university hospitals in
Germany have shown that standardized ETL-processing from FHIR into OMOP can achieve
99% conformance [40], which confirms the feasibility of the solution pattern where FHIR acts
as an intermediate sharing standard through which data from (legacy) systems are extracted
and made available for reuse in a common data model. One could argue that the distinction
between FHIR and OMOP becomes less relevant if data can be effectively stored in either
standard. We are hopeful that initiatives like OMOP-on-FHIR indeed will foster convergence
rather than collision between these two standards [41].

In the case of PLUGIN, another important consideration for choosing FHIR over OMOP is,
that from a data architecture perspective, the mechanism of FHIR Profiles can be tied to
principle of late binding commonly applied in data lake/warehouse architectures (Figure 2):
allow ingest of widely different sources, and gradually add more constraints and validations
as you move closer to a specific use case. If machine learning is the primary objective for
secondary use, we want to be able to cast a wider net of relevant data, rather than being too
restrictive when ingesting the data at the start of the processing pipeline. Late binding in data
warehousing is a design philosophy where data transformation and schema enforcement are
deferred as late as possible in the data processing pipeline, sometimes even until query time.
This approach contrasts with early binding, where data is transformed and structured as it is
ingested into the data warehouse. The advantage of this design is that it allows for greater
flexibility. During the initial ingestion of the data, we only require the data to conform to the
minimal syntactic standard defined by the base FHIR version (R4 in the diagram). As the
data is processed, more strict checks and constraints are applied, whereby ultimately different
profiles can co-exists next to one another (the two most inner rectangles), within a larger
rectangle with fewer restrictions. Note that if any of the profiles includes a FHIR extension,
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such as adding a field to include a someone’s birthname, the profiles are no longer strictly
concentric. Hence extra care needs to be taken when dealing with extensions when applying
the principle of late binding.

Figure 2: Principle of late binding with FHIR profiling mechanism, illustrated with FHIR
Profiles that are currently in use in the Netherlands.

We found that this principle of late binding also allows flexible and efficient implementations
of the data stations that make use of the current best practices of a lakehouse architecture of
[42–44] and the composable data stack [45]. Lakehouses typically have a zonal architecture
that follow the Extract-Load-Transform pattern (ELT) where data is ingested from the source
systems in bulk (E), delivered to storage with aligned schemas (L) and transformed into a
format ready for analysis (T) [42]. The discerning characteristic of the lakehouse architecture
is its foundation on low-cost and directly-accessible storage that also provides traditional
database management and performance features such as ACID transactions, data versioning,
auditing, indexing, caching, and query optimization [46]. Lakehouses thus combine the key
benefits of data lakes and data warehouses: low-cost storage in an open format accessible by a
variety of systems from the former, and powerful management and optimization features from
the latter. By explicitly aligning the mechanism of FHIR Profiles with this design pattern of a
data lakehouse enables us to use complementary standards and open-source components, most
notably Apache Arrow as the standard columnar in-memory format with RPC-based data
movement [47]; Apache Parquet as the standard columnar on-disk format [48]; and Apache
Iceberg as the open table format [49,50]. This design also enables the use of new embedded,
in-process data processing engines, which in turn opens up possibilities to bring computing
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workloads to edge devices, such as running DuckDB in the browser on top of WebAssembly
[51].

One of the key challenges in using FHIR in this way pertains to the need for upgrading the
whole ELT pipeline when upgrading to a new primary FHIR version, for example R6. The
potential technical debt of version upgrades in the future is not specific to FHIR, but being
a younger standard changes are more frequent compared to OMOP and openEHR. However,
we expect that the development time required to upgrade FHIR versions is significantly less
than the initial migration to FHIR.

The above considerations also show the conceptual difference of FHIR as a health data exchange
standard versus openEHR as a persistent storage of routine healthcare data and OMOP as a
persistent storage of health research data. For health data exchange and federated learning,
the recipient of the data determines to a large extent what subset of data available in the
source needs to be made available – i.e. the target data model is known late and this favors
late binding. In a persistent storage setting, the holder of the source data determines what
data needs to be stored – and typically everything – which favors early binding.

Health data standards in LMICs

It is a widely held belief that digital technologies have an important role to play in strengthen-
ing health systems in LMICs. Yet, also here the current fragmentation of health data stands
in the way of scaling up digital health programs beyond project-centric, vertical solutions into
sustainable health information exchanges [52]. In the context of global digital health develop-
ments, Mehl et al. have also called for convergence to open standards, similar to Tsafnat et al.,
but additionally stress the need for open-source technologies (also our main argument in this
paper), open content (representations of public health, health system or clinical knowledge
to guide implementations) and open architectures (reusable enterprise architecture patterns
for health systems) [15]. As for the open architecture, we see a convergence towards the
OpenHIE framework [53], which has been adopted by many sub-Saharan African countries as
the architectural blueprint for implementing nation-wide health information exchanges (HIE)
[54], including Nigeria [55], Kenya [56] and Tanzania [57]. Figure 3 shows an overview of the
OpenHIE architecture.

While the OpenHIE specification is agnostic to which data standards should be used, in practice
the digital health community in LMICs have de facto converged towards FHIR as the primary
standard for health information exchange, in line with the proposal by Tsafnat et al. To
illustrate this point, consider the OpenHIM Platform architecture (Figure 4), which is currently
the largest open-source implementation of the OpenHIE specification. Clients (Point-of-Service
systems) can initiate various workflows to submit or query patient data. The Shared Health
Record (SHR) acts as the core transactional system for the health information exchange, which
in this case is realized with the HAPI FHIR server, being one of the most widely used open-
source FHIR server implementations [58].
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Figure 3: OpenHIE architecture showing the Point of Service systems (black), the Interoper-
ability Layer (green) and the Component Layer (blue).
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Figure 4: OpenHIM Platform Architecture, illustrating the use of FHIR-based workflows be-
tween the components as specified in OpenHIE. CR: Client Registry. IOL: Interop-
erability Layer. MPI: Master Patient Index. SHR: Shared Health Record. Image
taken from https://jembi.gitbook.io/.

Looking at the Point-of-Service systems, we see that as of today openEHR is rarely used as
the standard for clinical administration in LMICs. The largest open-source electronic health
record (EHR) implementations for low-resource settings are based on non-standardized data
models, and it is unlikely this will change any time soon [59]. Instead, we see that FHIR-
native software development frameworks such as OpenSRP [60] and the Open Health Stack
[61] are being used more and more. In this approach, health professionals use Android apps
to register and collect routine health data (Figure 5). As an example, OpenSRP has been
deployed in 14 countries targeting various patient populations, amongst which a reference
implementation of the WHO antenatal and neonatal care guidelines for midwives in Lombok,
Indonesia [62,63]. Beda EMR takes a similar approach and provides a FHIR native front-end
that can be used in combination with any FHIR server as a backend [64]. Such a solution
design is particularly useful for mid-size and smaller healthcare facilities, which are often
resource constrained, lacking basic IT infrastructure to deploy a full-blown electronic medical
record system. Hence, by necessity, the FHIR-based SHR functions as the administrative
system-of-record and as the hub for information exchange at the same time. Note that this
observation in the context of LMICs is not intended to dismiss openEHR outright. As the
openEHR ecosystem continues to evolve, including its convergence with FHIR as a standard
data exchange interface [65,66], we are supportive of using openEHR to realize digital health
ecosystems like, for example, has been done in the European Nordic countries [67].

Finally, regarding longitudinal data analysis, we also see a convergence towards FHIR as the
primary standard in LMICs. As in the case of federated learning, the choice for FHIR to im-
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Figure 5: Overview of OpenSRP2 open-source framework for building clinical administration
apps. HIS: health information systems. Image source: https://docs.opensrp.io/.

plement data warehouse and analytic platforms is the preferred method due to the widespread
availability of complementary open-source technologies. FHIR-specific technologies such as
Bulk FHIR data access and SQL-on-FHIR mentioned earlier, allow the FHIR ecosystem to be
used, complemented and integrated with generic open-source data warehousing technologies
such as Clickhouse [68] and dbt [69]. Increasingly more studies have pointed to the potential
that FHIR can bring when it is used in conjunction with machine learning and AI [70]. FHIR-
based shared health records can act as systems of records for countries, thereby enabling reuse
by health researchers, foundations, etc. to create public value with this data.

All in all, we see that in the context of LMICs, the standardization of the three domains put
forward by Tsafnat merge into one. The SHR, as the key component within the OpenHIE
specification, serves as the back-end of the system-of-record and provides a transactional, per-
sistent storage engine for information exchange. Downstream longitudinal data stores continue
to use FHIR as the common data model for analytical purposes. One could argue that it is in
fact advantageous to converge to just one standard, thereby reducing complexity and cost of
the total system. Such a perspective ties in with the notion of hourglass model and open archi-
tectures: because FHIR is inherently designed to make optimal use of internet standards, such
as the json file format and REST APIs, it is very modular and developer friendly. The many
components that make up the FHIR allows the standard to be used effectively to implement
subsystems, such as a facility registry or a health worker registry. By comparison, OMOP
and openEHR are less flexible in their design and are thereby less suitable as a standard to
implement the subsystems defined in the OpenHIE specification.
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Conclusion and future research

We agree with Tsafnat et al. that there is a dire need to converge to open data standards in
healthcare, and support their proposal to focus on openEHR, FHIR and OMOP in health-
care informatics going forward. However, open standards are a necessary but not sufficient
condition for the convergence of health data standardization. The availability of open-source
implementations and complementary technologies are as important when choosing which open
standard to use. We find that the proposed trichotomy is too restrictive and therefore of lim-
ited use in guiding design choices to be made in real-world scenarios. Instead, we think that
the full-STAC approach described by Mehl et al. is more comprehensive [15]. Furthermore, we
argue that FHIR has the potential of acting as the spanning layer within the open health data
system at large, thereby enabling much wider standardization and adoption within the health
data ecosystem at large. This is illustrated by the two cases considered here, where FHIR is
used beyond its original scope as a health data exchange standard.

In the case of FL, FHIR can be used interchangeably with OMOP for longitudinal analysis.
Also, due to its inherently modular design, FHIR can be used in conjunction with the principle
of late binding, as opposed to early binding for OMOP and openEHR, which is a relevant design
criterion for implementing federated data platforms for secondary use.

In the case of LMICs, we see that FHIR is emerging as the standard for all three domains of
clinical administration, data exchange and longitudinal analysis. We expect that FHIR will
play a major role in driving health data convergence in LMICs, because the availability of
open-source implementations and complementary components are important enablers in these
resource-constrained environments. We strongly support ongoing developments to increase
the availability of open-source implementations as digital public goods [71] and integration
projects such as Instant OpenHIE [72], through which we have a fighting chance to move the
needle in health data standardization for LMICs.

Going forward, we suggest the following directions for future research. Given that health data
standardization will continue to require mappings, we propose to explore the use of machine
learning, and particularly large-language models, as a means to reduce the development ef-
fort required to create transformations between various health data formats. New machine
learning methods can also be developed to assess and improve data quality across the various
stages of the data processing pipelines. In terms of data integration, we expect that health
data will increasingly be used in conjunction with data from social services and the welfare
domain, which requires new techniques to integrate different data domains, for example using
knowledge graphs and ontologies. Last, but certainly not least, future research should not only
explore the technical but also the social implications of implementing open-source components
for data standardization across the healthcare system, specifically in settings where governance
or ethical considerations of data interoperability have not specifically been addressed at a reg-
ulatory level. In line with the embedding of open standards in the open-source ecosystem, we
assert that the benefits of health data standardization will only be realized if they are cou-
pled with collaborative, community-driven governance models. It remains essential to ensure
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that the development, adoption, and evolution of standards remain inclusive, transparent, and
responsive to the diverse needs within the health system.
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